Telegram Group & Telegram Channel
Еще недавно сложно было представить, что я буду постить ссылки на разработки Сбера, но с моей колокольни кажется, что в русскоязычном ML-коммьюнити по влиянию сейчас их опережает только Яндекс, причем разрыв стремительно сокращается. Так вот, я хотел обратить внимание уважаемых читателей на pytorch-lifestream - библиотеку для создания ембеддингов для из последовательностей евентов.

Я сам этой библиотекой не пользовался и в ближайшее время не планирую, мои задачи все больше из другого домена. Но концептуально подход мне кажется очень правильным. Более того, в последнее время я все больше верю, что почти весь прикладной ML сведется к сочетанию относительно сложного representation learning и простых моделей (линейных, kNN, cosine similarity) поверх этих representations. Это в свою очередь приведет к масштабируемому разделению обязанностей: core ML команда будет пилить те самые волшебные representations, а инженеры в продуктовых командах будут учить регрессию на этих фичах.

Мои вера основана на таких наблюдениях:

1) self-supervised и contrastive методы начали прилично работать в разных доменах и модальностях, в т.ч. мультимодально (самый популярный пример - CLIP);
2) архитектуры в разных задачах все больше сближаются (см. восхищение трансформерами в твиттере Карпатого)
3) деплоить и поддерживать такие модели становится проще, чем “классический” ML (всякие бустинги и ручные фичи).



tg-me.com/partially_unsupervised/141
Create:
Last Update:

Еще недавно сложно было представить, что я буду постить ссылки на разработки Сбера, но с моей колокольни кажется, что в русскоязычном ML-коммьюнити по влиянию сейчас их опережает только Яндекс, причем разрыв стремительно сокращается. Так вот, я хотел обратить внимание уважаемых читателей на pytorch-lifestream - библиотеку для создания ембеддингов для из последовательностей евентов.

Я сам этой библиотекой не пользовался и в ближайшее время не планирую, мои задачи все больше из другого домена. Но концептуально подход мне кажется очень правильным. Более того, в последнее время я все больше верю, что почти весь прикладной ML сведется к сочетанию относительно сложного representation learning и простых моделей (линейных, kNN, cosine similarity) поверх этих representations. Это в свою очередь приведет к масштабируемому разделению обязанностей: core ML команда будет пилить те самые волшебные representations, а инженеры в продуктовых командах будут учить регрессию на этих фичах.

Мои вера основана на таких наблюдениях:

1) self-supervised и contrastive методы начали прилично работать в разных доменах и модальностях, в т.ч. мультимодально (самый популярный пример - CLIP);
2) архитектуры в разных задачах все больше сближаются (см. восхищение трансформерами в твиттере Карпатого)
3) деплоить и поддерживать такие модели становится проще, чем “классический” ML (всякие бустинги и ручные фичи).

BY partially unsupervised


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/partially_unsupervised/141

View MORE
Open in Telegram


partially unsupervised Telegram | DID YOU KNOW?

Date: |

Launched in 2013, Telegram allows users to broadcast messages to a following via “channels”, or create public and private groups that are simple for others to access. Users can also send and receive large data files, including text and zip files, directly via the app.The platform said it has more than 500m active users, and topped 1bn downloads in August, according to data from SensorTower.

The seemingly negative pandemic effects and resource/product shortages are encouraging and allowing organizations to innovate and change.The news of cash-rich organizations getting ready for the post-Covid growth economy is a sign of more than capital spending plans. Cash provides a cushion for risk-taking and a tool for growth.

partially unsupervised from ye


Telegram partially unsupervised
FROM USA